Alan Turing: The Father of Artificial Intelligence

In this era of technological revolution, we see new applications every day. If you take a closer look, almost every platform has some sort of AI-enhanced feature. However, how did this start? Let’s go back to the early 20th century and discover everything about the father of AI.

Alan Turing: The Father of Artificial Intelligence
Written by TechnoLynx Published on 23 Jan 2025

Introduction

In 1912, one of the biggest disasters took place. Since then, the RMS Titanic has been lying on the bottom of the Atlantic Ocean. However, in the same year, one of the brightest and most influential minds was born.

The word is for Alan Turing, the father of Artificial Intelligence (AI) and computer science as we know it today. Despite his short life, Alan Turing has made significant contributions, not just to science but to the way we think.

The Universal Turing Machine (UTM) is the best example of this concept. According to Turing, a single machine can perform any task given the right instructions (Turing, 1937). This, of course, raised another question: ‘Can machines think?’ This was the main content of his paper ‘Computing Machinery and Intelligence’ (Turing, 1950). The answer was given by the Turing test, in which an evaluator interacts with both a machine and a human. If the evaluator cannot tell the difference with conviction, the machine has passed the test.

The relevance of Turing’s work extends to technologies including Computer Vision (CV), Generative AI, GPU acceleration, and IoT edge computing, technologies that rely on the computers understanding and processing the data that are fed into them or even generating new data based on a series of ‘thoughts’. The relevance of his work is expanded to the fields of Augmented Reality (AR), Virtual Reality (VR), Mixed Reality (MR), and Extended Reality (XR), all of them being technologies that incorporate AI to enhance user experiences in an interactive way. Let’s take a look at the life and work of this extraordinary individual with a complicated mind.

Figure 1 – Alan Mathison Turing (The Turing Digital Archive, n.d.)
Figure 1 – Alan Mathison Turing (The Turing Digital Archive, n.d.)

Alan Turing’s Early Life and Academic Foundations

First years

Born in the middle-upper class, although Alan Turing’s parents worked as civil servants in India, Turing was raised in London by relatives. From a young age, Turing displayed signs of upper intellect. He attended Sherborne School in Dorset, where he excelled in mathematics, his love of which led to his enrolment at King’s College in 1931. He graduated with the highest honours in 1934 and became a fellow of King’s College at age 22 (Britannica, 2024).

Academia

In 1936, Turing reached a pivotal point in his career. From then until 1938, he studied at Princeton University in the United States as a graduate student, where he studied under the mentorship of mathematician Alonzo Church. The two academics often conversed about foundational mathematical concepts and, as a result, Turing’s dissertation ‘Systems of Logic Based on Ordinals’ under Church’s supervision introduced innovative ideas that reformed and expanded ‘what can be computed’, but most importantly ‘how’. Apart from his mentor, Turing interacted with other influential figures such as von Neuman and Gödel. This was a result of the effort Princeton University made to establish itself as a world-class centre for mathematics (Princeton, n.d.). The established environment encouraged Turing to solidify his thoughts regarding computability, leading to the formulation of the UTM. Despite the machine being abstract, the logical principles described there are relevant to this day!

Figure 2 – Alan Turing’s Princeton University File (Princeton, 2014)
Figure 2 – Alan Turing’s Princeton University File (Princeton, 2014)

The Universal Turing Machine

The paper ‘On Computable Numbers with an Application to the Entscheidungsproblem’, published in 1936, was probably one of the hallmarks of Alan Turing’s academic work. It starts with a definition of ‘computable numbers’, which, in simple words, are all the numbers an algorithm can compute. In this step, a boundary is set between which numbers can and which cannot be computed mechanically. The UTM demonstrated that one single machine can perform any computation that can be expressed algorithmically, basically unifying all previous Turing machines in one setting, thus, the foundation of contemporary computer programming. An application of David Hilbert’s Entscheidungsproblem is then discussed. This paper examined the possibility of an algorithm that could determine which mathematical statements are true or false. Turing proved that such an algorithm cannot possibly exist and that some problems are unsolvable, proving that limitations in computation do exist in both mathematics and computer science. This proof has been called ‘Turing’s proof’ (History of Information, 2024).

All the ideas originating in this paper have laid the foundation for electronic computing. Apart from giving us an understanding of computation limits, it set the foundation for computer science, kicked off the development of task-specific programming languages, and set the scene for AI!

Figure 3 – The Enigma Machine, a complex device used by Nazis to encrypt communications (The National Museum of Computing, n.d.)
Figure 3 – The Enigma Machine, a complex device used by Nazis to encrypt communications (The National Museum of Computing, n.d.)

World War II and the Birth of Modern Computing

Of course, World War II was at the gates. The British government was running a top-secret code-breaking centre in Bletchley Park. Turing joined the effort in 1939, given the impossible task of breaking the Enigma machine, a complex device used by Nazis to encrypt communications. One might think, ‘ok, all it takes is to find a pattern’, yet the encryption changed daily, creating approximately 159 quintillion possible combinations! This alone made manual codebreaking impossible, so Turing came up with new methods, training both himself and others on his breakthroughs as they evolved (Imperial War Museum, n.d.). To make the codebreaking process more efficient, Turing developed the Bombe machine, an electromechanical device that automated the decryption of Enigma. It worked by simulating multiple Enigmas simultaneously and testing various settings, thus reducing the time needed to break codes from days to minutes. In 1942, Turing travelled back to the States to share his knowledge and advise the US military intelligence to use it (Britannica, 2024).

His work during wartime revolutionised modern computing. Turing, with the development of the Bombe and the principles behind it, contributed to the development of early postwar computers. The techniques he used during his time in Bletchley Park laid the groundwork for modern encryption methods and showcased the need for secure communications, and his ideas that a machine could learn from data became the pillars of machine learning and AI.

Figure 4 – A scene from the film Imitation Game depicting Alan Turing and the Bombe (Watercutter, 2014)
Figure 4 – A scene from the film Imitation Game depicting Alan Turing and the Bombe (Watercutter, 2014)

Read more: Cinematic VFX AI: Enhancing Filmmaking and Post-Production

The Turing Test

The Earliest Concept of AI

Earlier, we mentioned the Turing Test. Let us go back to it to understand what it is like. First, we need to assign roles. On the one hand, we have a machine and, on the other hand, a human participant. Another human in the role of the ‘interrogator’ is conversing with both of them in turns, without knowing with which at any moment. If the interrogator cannot distinguish between the two in a casual conversation based on the responses he gets, the machine is said to have passed the test.

The Turing Test is probably the best way to measure machine intelligence in the area of Conversational AI, yet there are limitations. The machine’s focus is human imitation, not understanding or developing a consciousness. This raises the following question: How smart can a machine actually be, and can it think on its own? From our point of view, it depends on how much data it is able to process, yet Alan Turing has already established that there is indeed a limit on that. Yet, the Turing Test is a great example of similar machine learning-based applications that we use today. How do you think text auto-correction works?! And don’t forget that it was developed in the 1950s (Coursera, 2024)!

Machine Against Humanity

Over the years, many people have questioned whether machines should be as capable as they are. Some people call them conspiracists; others call them just cautious. We are not here to judge, yet there are certain elements that must be taken into account with AI. On the one hand, certain ethical issues have been raised by different scholars on whether machines indeed have the ability to actually think. On the other hand, and this is where it gets interesting, it has been implied that, in order for a machine to pass the Turing Test, it needs to be as human as possible. One of the characteristics of humans is the disadvantage of fatigue, which causes mistakes to occur. Could a machine deliberately introduce mistakes in its mimicking to trick the ‘interrogator’? Is that ethical, and could this actually imply true intelligence?

Read more: Human and Machine: Working Together in a New Era of AI-Powered Robotics

Applications in Modern Technologies

Applications where we can find elements of the Turing Test are all around us. CV, for example, is based on the processing of visual data, which first needs to be translated into numeric data and then processed. Keep this in mind the next time you use Google Lens. Other examples include AI consultants like ChatGPT for practically any task, perplexity.ai for academia, and DALL-E for image generation using prompts. Apart from these, there are also commercial applications in different industries, such as generative AI in insurance for fraud detection, AI in manufacturing, and quality control in the automobile industry. It is hard to find a company nowadays without some kind of AI-embedded algorithm in one of their products. You can find out more in our AI Assistants article here!

We can also find applications in vehicles, and not just in autonomous ones. Some cars are equipped with cameras all around to generate a bird’s eye view of the car and its surroundings on the infotainment system while parking, providing a more fun and creative interaction. Creativity doesn’t end there, though. XR is a great way to enhance our visual experience in different applications. In 2016, a new release entered the mobile gaming universe, which is no other than Pokémon Go. Using AR, players would hunt for Pokémon in the real world using the cameras and screens of their phones. VR gaming has been re-established with commercial products, such as the ones offered by Oculus, and Apple Vision Pro offers the possibility of interaction with an AR environment, aka MR!

Summing Up

The idea that a single person could have achieved so much in such a short period of time is really outstanding. During his 41 years of life, we dare say that Alan Turing achieved more than others would have during 2 lifetimes. He introduced new concepts, saved millions of lives during WWII and set the foundation for the Artificial Intelligence we experience today. Have machines been perfected? In our opinion, there is no such thing as ‘perfection’. Yet, it is safe to say that they have gone a long way and that the best is yet to come. After all, consider how many of the conveniences and applications we have today were unimaginable two decades ago!

What we offer

At TechnoLynx, we like to think of ourselves as practical implementers of Turing’s work by offering AI solutions custom-tailored to every company’s needs. We design our services on demand for each task from scratch, and that is our key to successfully delivering high-level custom software engineering services while ensuring human-machine interaction safety. Our team specialises in custom software development, managing, and analysing large amounts of data while at the same time addressing ethical considerations.

We are able to empower any given field and industry with our technological expertise using innovative AI-driven algorithms, including Machine Learning consulting and MLOps consulting, because we understand how beneficial AI can be for any business, increasing efficiency while reducing cost. The always-changing AI landscape is a constant challenge, and we are made to be challenged. Just contact us, let us do our stuff, and observe your project reach the sky!

Continue reading: Artificial General Intelligence (AGI) and the Human Body

List of References

AI-Driven Aseptic Operations: Eliminating Contamination

AI-Driven Aseptic Operations: Eliminating Contamination

21/10/2025

Learn how AI-driven aseptic operations help pharmaceutical manufacturers reduce contamination, improve risk assessment, and meet FDA standards for safe, sterile products.

AI Visual Quality Control: Assuring Safe Pharma Packaging

AI Visual Quality Control: Assuring Safe Pharma Packaging

20/10/2025

See how AI-powered visual quality control ensures safe, compliant, and high-quality pharmaceutical packaging across a wide range of products.

AI for Reliable and Efficient Pharmaceutical Manufacturing

AI for Reliable and Efficient Pharmaceutical Manufacturing

15/10/2025

See how AI and generative AI help pharmaceutical companies optimise manufacturing processes, improve product quality, and ensure safety and efficacy.

AI in Pharma R&D: Faster, Smarter Decisions

AI in Pharma R&D: Faster, Smarter Decisions

3/10/2025

How AI helps pharma teams accelerate research, reduce risk, and improve decision-making in drug development.

Sterile Manufacturing: Precision Meets Performance

Sterile Manufacturing: Precision Meets Performance

2/10/2025

How AI and smart systems are helping pharma teams improve sterile manufacturing without compromising compliance or speed.

Biologics Without Bottlenecks: Smarter Drug Development

Biologics Without Bottlenecks: Smarter Drug Development

1/10/2025

How AI and visual computing are helping pharma teams accelerate biologics development and reduce costly delays.

AI for Cleanroom Compliance: Smarter, Safer Pharma

AI for Cleanroom Compliance: Smarter, Safer Pharma

30/09/2025

Discover how AI-powered vision systems are revolutionising cleanroom compliance in pharma, balancing Annex 1 regulations with GDPR-friendly innovation.

Nitrosamines in Medicines: From Risk to Control

Nitrosamines in Medicines: From Risk to Control

29/09/2025

A practical guide for pharma teams to assess, test, and control nitrosamine risks—clear workflow, analytical tactics, limits, and lifecycle governance.

Making Lab Methods Work: Q2(R2) and Q14 Explained

Making Lab Methods Work: Q2(R2) and Q14 Explained

26/09/2025

How to build, validate, and maintain analytical methods under ICH Q2(R2)/Q14—clear actions, smart documentation, and room for innovation.

Barcodes in Pharma: From DSCSA to FMD in Practice

Barcodes in Pharma: From DSCSA to FMD in Practice

25/09/2025

What the 2‑D barcode and seal on your medicine mean, how pharmacists scan packs, and why these checks stop fake medicines reaching you.

Pharma’s EU AI Act Playbook: GxP‑Ready Steps

Pharma’s EU AI Act Playbook: GxP‑Ready Steps

24/09/2025

A clear, GxP‑ready guide to the EU AI Act for pharma and medical devices: risk tiers, GPAI, codes of practice, governance, and audit‑ready execution.

Cell Painting: Fixing Batch Effects for Reliable HCS

Cell Painting: Fixing Batch Effects for Reliable HCS

23/09/2025

Reduce batch effects in Cell Painting. Standardise assays, adopt OME‑Zarr, and apply robust harmonisation to make high‑content screening reproducible.

Explainable Digital Pathology: QC that Scales

22/09/2025

Raise slide quality and trust in AI for digital pathology with robust WSI validation, automated QC, and explainable outputs that fit clinical workflows.

Validation‑Ready AI for GxP Operations in Pharma

19/09/2025

Make AI systems validation‑ready across GxP. GMP, GCP and GLP. Build secure, audit‑ready workflows for data integrity, manufacturing and clinical trials.

Image Analysis in Biotechnology: Uses and Benefits

17/09/2025

Learn how image analysis supports biotechnology, from gene therapy to agricultural production, improving biotechnology products through cost effective and accurate imaging.

Edge Imaging for Reliable Cell and Gene Therapy

17/09/2025

Edge imaging transforms cell & gene therapy manufacturing with real‑time monitoring, risk‑based control and Annex 1 compliance for safer, faster production.

Biotechnology Solutions for Climate Change Challenges

16/09/2025

See how biotechnology helps fight climate change with innovations in energy, farming, and industry while cutting greenhouse gas emissions.

Vision Analytics Driving Safer Cell and Gene Therapy

15/09/2025

Learn how vision analytics supports cell and gene therapy through safer trials, better monitoring, and efficient manufacturing for regenerative medicine.

AI in Genetic Variant Interpretation: From Data to Meaning

15/09/2025

AI enhances genetic variant interpretation by analysing DNA sequences, de novo variants, and complex patterns in the human genome for clinical precision.

AI Visual Inspection for Sterile Injectables

11/09/2025

Improve quality and safety in sterile injectable manufacturing with AI‑driven visual inspection, real‑time control and cost‑effective compliance.

Turning Telecom Data Overload into AI Insights

10/09/2025

Learn how telecoms use AI to turn data overload into actionable insights. Improve efficiency with machine learning, deep learning, and NLP.

Computer Vision in Action: Examples and Applications

9/09/2025

Learn computer vision examples and applications across healthcare, transport, retail, and more. See how computer vision technology transforms industries today.

Hidden Costs of Fragmented Security Systems

8/09/2025

Learn the hidden costs of a fragmented security system, from monthly fee traps to rising insurance premiums, and how to fix them cost-effectively.

EU GMP Annex 1 Guidelines for Sterile Drugs

5/09/2025

Learn about EU GMP Annex 1 compliance, contamination control strategies, and how the pharmaceutical industry ensures sterile drug products.

Predicting Clinical Trial Risks with AI in Real Time

5/09/2025

AI helps pharma teams predict clinical trial risks, side effects, and deviations in real time, improving decisions and protecting human subjects.

5 Real-World Costs of Outdated Video Surveillance

4/09/2025

Outdated video surveillance workflows carry hidden costs. Learn the risks of poor image quality, rising maintenance, and missed incidents.

GDPR and AI in Surveillance: Compliance in a New Era

2/09/2025

Learn how GDPR shapes surveillance in the era of AI. Understand data protection principles, personal information rules, and compliance requirements for organisations.

Generative AI in Pharma: Compliance and Innovation

1/09/2025

Generative AI transforms pharma by streamlining compliance, drug discovery, and documentation with AI models, GANs, and synthetic training data for safer innovation.

AI Vision Models for Pharmaceutical Quality Control

1/09/2025

Learn how AI vision models transform quality control in pharmaceuticals with neural networks, transformer architecture, and high-resolution image analysis.

AI Analytics Tackling Telecom Data Overload

29/08/2025

Learn how AI-powered analytics helps telecoms manage data overload, improve real-time insights, and transform big data into value for long-term growth.

AI Visual Inspections Aligned with Annex 1 Compliance

28/08/2025

Learn how AI supports Annex 1 compliance in pharma manufacturing with smarter visual inspections, risk assessments, and contamination control strategies.

Cutting SOC Noise with AI-Powered Alerting

27/08/2025

Learn how AI-powered alerting reduces SOC noise, improves real time detection, and strengthens organisation security posture while reducing the risk of data breaches.

AI for Pharma Compliance: Smarter Quality, Safer Trials

27/08/2025

AI helps pharma teams improve compliance, reduce risk, and manage quality in clinical trials and manufacturing with real-time insights.

Cleanroom Compliance in Biotech and Pharma

26/08/2025

Learn how cleanroom technology supports compliance in biotech and pharmaceutical industries. From modular cleanrooms to laminar flow systems, meet ISO 14644-1 standards without compromise.

AI’s Role in Clinical Genetics Interpretation

25/08/2025

Learn how AI supports clinical genetics by interpreting variants, analysing complex patterns, and improving the diagnosis of genetic disorders in real time.

Computer Vision and the Future of Safety and Security

19/08/2025

Learn how computer vision improves safety and security through object detection, facial recognition, OCR, and deep learning models in industries from healthcare to transport.

Artificial Intelligence in Video Surveillance

18/08/2025

Learn how artificial intelligence transforms video surveillance through deep learning, neural networks, and real-time analysis for smarter decision support.

Top Biotechnology Innovations Driving Industry R&D

15/08/2025

Learn about the leading biotechnology innovations shaping research and development in the industry, from genetic engineering to tissue engineering.

AR and VR in Telecom: Practical Use Cases

14/08/2025

Learn how AR and VR transform telecom through real world use cases, immersive experience, and improved user experience across mobile devices and virtual environments.

AI-Enabled Medical Devices for Smarter Healthcare

13/08/2025

See how artificial intelligence enhances medical devices, deep learning, computer vision, and decision support for real-time healthcare applications.

3D Models Driving Advances in Modern Biotechnology

12/08/2025

Learn how biotechnology and 3D models improve genetic engineering, tissue engineering, industrial processes, and human health applications.

Computer Vision Applications in Modern Telecommunications

11/08/2025

Learn how computer vision transforms telecommunications with object detection, OCR, real-time video analysis, and AI-powered systems for efficiency and accuracy.

Telecom Supply Chain Software for Smarter Operations

8/08/2025

Learn how telecom supply chain software and solutions improve efficiency, reduce costs, and help supply chain managers deliver better products and services.

Enhancing Peripheral Vision in VR for Wider Awareness

6/08/2025

Learn how improving peripheral vision in VR enhances field of view, supports immersive experiences, and aids users with tunnel vision or eye disease.

AI-Driven Opportunities for Smarter Problem Solving

5/08/2025

AI-driven problem-solving opens new paths for complex issues. Learn how machine learning and real-time analysis enhance strategies.

10 Applications of Computer Vision in Autonomous Vehicles

4/08/2025

Learn 10 real world applications of computer vision in autonomous vehicles. Discover object detection, deep learning model use, safety features and real time video handling.

10 Applications of Computer Vision in Autonomous Vehicles

4/08/2025

Learn 10 real world applications of computer vision in autonomous vehicles. Discover object detection, deep learning model use, safety features and real time video handling.

How AI Is Transforming Wall Street Fast

1/08/2025

Discover how artificial intelligence and natural language processing with large language models, deep learning, neural networks, and real-time data are reshaping trading, analysis, and decision support on Wall Street.

Back See Blogs
arrow icon