What are transformers in deep learning?

The article below provides an insightful comparison between two key concepts in artificial intelligence: Transformers and Deep Learning.

What are transformers in deep learning?
Written by TechnoLynx Published on 05 Oct 2023

Transformers have emerged as a powerful architecture for handling sequential data, offering significant advantages over traditional recurrent neural networks (RNNs) and convolutional neural networks (CNNs). Unlike RNNs, which process input sequences one time step at a time, transformers operate on entire input sequences simultaneously. This is achieved through the use of attention mechanisms, which allow the model to focus on different parts of the input sequence when generating an output sequence.

At the heart of transformer models is the attention layer, which computes the importance of each element in the input sequence with respect to every other element. This enables transformers to capture long-range dependencies and relationships within the data more effectively than RNNs.

The transformer architecture consists of an encoder-decoder architecture, with each component containing multiple layers of attention and feed-forward neural networks. During the encoding phase, the input sequence is processed by the encoder, which applies positional encoding to preserve the order of the input elements.

The encoder then passes the encoded representation to the decoder, which generates the output sequence step by step. At each time step, the decoder attends to the relevant parts of the input sequence using the attention mechanism, allowing it to generate the output sequence with high accuracy.

One key innovation of transformers is positional encoding, which addresses the lack of inherent order information in the input sequences. This encoding scheme adds positional information to the input embeddings, enabling the model to distinguish between different elements of the sequence based on their positions.

Another important component of transformers is the feed-forward layer, which applies non-linear transformations to the input data, helping to capture complex patterns and relationships.

Transformers have found widespread applications in natural language processing tasks, such as neural machine translation, text generation, and sentiment analysis. Their ability to handle variable-length input sequences and capture long-range dependencies makes them particularly well-suited for these tasks.

Additionally, transformers have been successfully applied to other domains, including image processing, where they have demonstrated state-of-the-art performance on tasks such as image captioning and object detection.

In the transformer architecture introduced by Vaswani et al., the multi-headed attention mechanism allows the model to capture complex relationships within the input sequence effectively. Each attention head learns to focus on different parts of the input sequence, enabling the model to extract relevant information for various tasks such as machine learning, computer vision, and speech recognition.

By computing the dot product between the query, key, and value vectors, the attention mechanism assigns weights to different elements of the input sequence based on their relevance to the current output. This mechanism has been particularly successful in tasks requiring input and output sequences of variable lengths, such as language translation and speech synthesis. Additionally, transformers can benefit from pre-trained word embeddings and image features, leveraging knowledge from large datasets to improve performance on specific tasks.

In summary, transformers represent a significant advancement in deep learning architecture, offering improved performance and scalability compared to traditional RNNs and CNNs. By leveraging attention mechanisms and feed-forward layers, transformers are able to effectively process input sequences and generate output sequences with high accuracy. As the field of deep learning continues to evolve, transformers are likely to play an increasingly important role in a wide range of applications.

Credits: History-computer.com

Continue reading: Deep-learning system explores materials’ interiors from the outside

AI-Driven Opportunities for Smarter Problem Solving

AI-Driven Opportunities for Smarter Problem Solving

5/08/2025

AI-driven problem-solving opens new paths for complex issues. Learn how machine learning and real-time analysis enhance strategies.

How AI Is Transforming Wall Street Fast

How AI Is Transforming Wall Street Fast

1/08/2025

Discover how artificial intelligence and natural language processing with large language models, deep learning, neural networks, and real-time data are reshaping trading, analysis, and decision support on Wall Street.

How AI Transforms Communication: Key Benefits in Action

How AI Transforms Communication: Key Benefits in Action

31/07/2025

How AI transforms communication: body language, eye contact, natural languages. Top benefits explained. TechnoLynx guides real‑time communication with large language models.

Generative AI Security Risks and Best Practice Measures

Generative AI Security Risks and Best Practice Measures

28/07/2025

Generative AI security risks explained by TechnoLynx. Covers generative AI model vulnerabilities, mitigation steps, mitigation & best practices, training data risks, customer service use, learned models, and how to secure generative AI tools.

Real-Time Computer Vision for Live Streaming

Real-Time Computer Vision for Live Streaming

21/07/2025

Understand how real-time computer vision transforms live streaming through object detection, OCR, deep learning models, and fast image processing.

Next-Gen Chatbots for Immersive Customer Interaction

Next-Gen Chatbots for Immersive Customer Interaction

11/07/2025

Learn how chatbots and immersive portals enhance customer interaction and customer experience in real time across multiple channels for better support.

Generative AI Tools in Modern Video Game Creation

Generative AI Tools in Modern Video Game Creation

28/05/2025

Learn how generative AI, machine learning models, and neural networks transform content creation in video game development through real-time image generation, fine-tuning, and large language models.

Artificial Intelligence in Supply Chain Management

Artificial Intelligence in Supply Chain Management

27/05/2025

Learn how artificial intelligence transforms supply chain management with real-time insights, cost reduction, and improved customer service.

Machine Learning and AI in Modern Computer Science

Machine Learning and AI in Modern Computer Science

20/05/2025

Discover how computer science drives artificial intelligence and machine learning—from neural networks to NLP, computer vision, and real-world applications. Learn how TechnoLynx can guide your AI journey.

Real-Time Data Streaming with AI

Real-Time Data Streaming with AI

19/05/2025

You have surely heard that ‘Information is the most powerful weapon’. However, is a weapon really that powerful if it does not arrive on time? Explore how real-time streaming powers Generative AI across industries, from live image generation to fraud detection.

Cutting-Edge Marketing with Generative AI Tools

Cutting-Edge Marketing with Generative AI Tools

13/05/2025

Learn how generative AI transforms marketing strategies—from text-based content and image generation to social media and SEO. Boost your bottom line with TechnoLynx expertise.

Fine-Tuning Generative AI Models for Better Performance

Fine-Tuning Generative AI Models for Better Performance

8/05/2025

Understand how fine-tuning improves generative AI. From large language models to neural networks, TechnoLynx offers advanced solutions for real-world AI applications.

Generative AI's Role in Shaping Modern Data Science

6/05/2025

Learn how generative AI impacts data science, from enhancing training data and real-time AI applications to helping data scientists build advanced machine learning models.

Deep Learning vs. Traditional Computer Vision Methods

5/05/2025

Compare deep learning and traditional computer vision. Learn how deep neural networks, CNNs, and artificial intelligence handle image recognition and quality control.

Control Image Generation with Stable Diffusion

30/04/2025

Learn how to guide image generation using Stable Diffusion. Tips on text prompts, art style, aspect ratio, and producing high quality images.

The Foundation of Generative AI: Neural Networks Explained

28/04/2025

Find out how neural networks support generative AI models with applications like content creation, and where these models are used in real-world scenarios.

Agentic AI vs Generative AI: What Sets Them Apart?

17/04/2025

Understand the difference between agentic AI and generative AI, including how they work in content creation, deep learning, and artificial intelligence applications.

Top Cutting-Edge Generative AI Applications in 2025

14/04/2025

Learn how applications in text, image, music, fashion, architecture, and business are driven by deep learning, neural networks, and large language models.

TechnoLynx Named a Top Machine Learning Company

9/04/2025

TechnoLynx named a top machine learning development company by Vendorland. We specialise in AI, supervised learning, and custom machine learning systems that deliver real business results.

Generative AI Models: How They Work and Why They Matter

3/04/2025

Learn how generative AI models like GANs, VAEs, and LLMs work. Understand their role in content creation, image generation, and AI applications.

Markov Chains in Generative AI Explained

31/03/2025

Discover how Markov chains power Generative AI models, from text generation to computer vision and AR/VR/XR. Explore real-world applications!

How Generative AI Is Changing Search Engines

27/03/2025

Learn how generative AI models improve search engines. Understand text generation, image creation, user experiences, and machine learning in content delivery.

AI Prompt Engineering: 2025 Guide

21/03/2025

Learn how prompt engineering enhances generative AI outputs for text, images, and customer service.

Generative AI: Pharma's Drug Discovery Revolution

20/03/2025

Discover how generative AI transforms drug discovery, medical imaging, and customer service in the pharmaceutical industry.

Generative AI in Data Analytics: Enhancing Insights

14/03/2025

Learn how generative AI transforms data analytics by creating realistic datasets, enhancing predictive analytics, and improving data visualisation.

Generative AI and Supervised Learning: A Perfect Pair

12/03/2025

Learn how generative AI combines with supervised learning to improve model accuracy and efficiency. Understand the role of supervised learning algorithms in training generative AI models.

Generative AI in Medical Imaging: Transforming Diagnostics

7/03/2025

Learn how generative AI is revolutionising medical imaging with techniques like GANs and VAEs. Explore applications in image synthesis, segmentation, and diagnosis.

Generative AI and Prompt Engineering: A Simple Guide

4/03/2025

Learn about Generative AI and Prompt Engineering. Understand language models, training data, and real-world applications in AI-powered content creation.

Copyright Issues With Generative AI and How to Navigate Them

3/03/2025

Recent discussions about generative AI tools have raised copyright concerns. Explore how AI reinforces ethical practices.

Neural Networks and Their Role in Generative AI

27/02/2025

Learn how neural networks power generative AI models. Understand training data, image generation, computer vision, and AI systems in customer service and medical imaging.

The Pros and Cons of Generative AI in Customer Service

26/02/2025

Learn how generative AI models impact customer service. Understand the benefits and challenges of AI-powered customer interactions and personalised experiences.

Understanding Generative AI and Stable Diffusion Models

25/02/2025

Learn how generative AI models like Stable Diffusion generate content. Understand diffusion models, machine learning, and applications in medical imaging, computer vision, and customer service.

How Agents Learn Through Trial and Error: Reinforcement Learning

24/02/2025

Discover how RL is applied in various industries, from robotics and gaming to healthcare and finance. Explore the key concepts, algorithms, and real-world examples to grasp the potential of this transformative technology.

How AI Tools Are Changing the Way We Create Art

19/02/2025

Learn how AI tools and generative AI help artists create art, design animations, manage social media content, and produce high-quality content in real-time.

Generative AI is Driving Smarter Business Solutions

17/02/2025

Learn how businesses are using generative AI to improve productivity, streamline operations, and create personalised customer experiences.

Generative AI Development Services for Smarter AI Solutions

12/02/2025

Looking for generative AI development services? Learn how machine learning models, natural language processing, and neural networks improve content creation, image generation, and more.

The Impact of Computer Vision on Real-Time Face Detection

10/02/2025

Learn how computer vision, a branch of AI, drives innovation in face detection with the help of CNNs, real-time video processing, and Generative AI.

Deep Learning in Medical Computer Vision: How It Works

7/02/2025

Deep learning and computer vision improve medical image recognition and object detection. Learn how AI-powered models help in healthcare.

Generative AI and Supervised Learning in Real-World Use

6/02/2025

Generative AI and supervised learning use neural networks to process input data. Learn how these AI techniques improve image generation, text-based tasks, and medical images.

3D Visualisation Just Became Smarter with AI

3/02/2025

We are all very familiar with 3D printers. Chances are that you want one, you already have one, or you have a friend who does. The concept of ‘Let’s make everything 3D’ is not new, yet the industrial applications of it mostly are. In this article, we will discuss how incorporating AI into 3D scanning, projecting, and modelling can transform the industry in so many fields.

Custom AI Development Services for Business Growth

29/01/2025

Looking for custom AI development services? Learn how tailored AI models can improve efficiency and drive growth.

AI Assistants: Surpassing the Limits of Productivity

27/01/2025

Don’t we all dream of getting things done with the least amount of effort? AI assistants are here to solve this issue for most. If you are into content creation, if quality control is your main occupation or if your goal is to manage your tasks efficiently and set priorities, don’t miss this article.

Alan Turing: The Father of Artificial Intelligence

23/01/2025

In this era of technological revolution, we see new applications every day. If you take a closer look, almost every platform has some sort of AI-enhanced feature. However, how did this start? Let’s go back to the early 20th century and discover everything about the father of AI.

Generative AI vs. Traditional Machine Learning

10/01/2025

Learn the key differences between generative AI and traditional machine learning. Explore applications, data needs, and how these technologies shape AI innovation.

Generative AI for Customer Service: The Ultimate Guide

8/01/2025

Learn how generative AI transforms customer service by using natural language processing, machine learning models, and cutting-edge tools like GANs and VAEs.

AI in Security: Defence for All!

6/01/2025

Is it safe to say that we live securely? If not, what can we do to make things safer? Does this apply only to our homes, or are there things that we can do for ourselves? And what about homeland security? The answer lies inside!

Optimising LLMOps: Improvement Beyond Limits!

2/01/2025

If we didn’t have LLMOps, the Internet as it is today simply wouldn’t exist. We live in an era of great automation, where content generation is just two clicks away. How is it that LLMOps are so powerful, though? What technology is behind this success? Let’s find out!

Machine Learning, Deep Learning, LLMs and GenAI Compared

20/12/2024

Explore the differences and connections between machine learning, deep learning, large language models (LLMs), and generative AI (GenAI).

← Back to Blog Overview