Using AI to Reduce Our Carbon Footprint

We will explore how AI technologies like computer vision, generative AI, IoT edge computing, and GPU acceleration are being used to reduce our carbon footprint. AI can be applied to make wise choices in industries, supply chains, and our daily lives.

Using AI to Reduce Our Carbon Footprint
Written by TechnoLynx Published on 03 Jun 2024

Introduction

Every choice you make in your day-to-day life for your personal needs doesn’t just influence you. It leaves a mark on the environment around you. This is what we call a carbon footprint. We all have a carbon footprint, and it mostly depends on the amount of greenhouse gases we emit. These gases trap and release heat, affecting the climate negatively. As good residents of our planet, we are constantly trying to reduce our carbon footprint.

Our planet is our responsibility.
Our planet is our responsibility.

AI is a very powerful tool that can be used to combat climate change using technologies like computer vision, generative AI, IoT edge computing, and GPU acceleration. Using AI can directly result in reducing global warming and our carbon footprint.

Multiple industries are interested in lowering their emission levels as a part of their vision and goals. This has led to the global carbon footprint management market size being valued at $11 billion to date. In fact, a survey showed that 87% of CEOs with decision-making authority in AI and climate believe that advancements in AI technology are essential for reversing climate change.

In this article, we’ll explore how various AI technologies are being used to reduce carbon footprints. We’ll also discuss the related challenges and the best way to combat them. Let’s dive right in!

AI for Tracking Air Quality

If you live in a highly populated city, you must know how bad air pollution can be. We’ve reached the point where city kids may not be able to see a clear starry night. Air pollution contributes to severe health conditions, and controlling it is key to a greener future.

Air pollution is becoming more and more of a problem nowadays.
Air pollution is becoming more and more of a problem nowadays.

Generative AI can help authorities anticipate increases in air pollution. It can simulate various air quality scenarios based on past and current data, such as traffic patterns, industrial activities, and weather conditions. Based on these simulations, authorities can plan ahead and make decisions to reduce carbon emissions and improve public health.

Meanwhile, managing air pollution in the present requires complex numerical models that can understand weather conditions and various other factors. AI systems can easily take up this task and analyse data generated by various IoT sensors and measurements from monitoring stations to provide detailed information.

Analysis can be done in real-time with the use of edge computing in the monitoring stations. Edge computing processes data close to where it’s collected, right at the edge of the network, allowing for quicker analysis and response times. This means decisions to improve air quality can be made faster and more accurately, directly impacting efforts to reduce pollution efficiently.

An example of an IoT sensor monitoring air quality.
An example of an IoT sensor monitoring air quality.

For example, let’s say a city is dealing with a lot of smog. AI can sift through data from IoT sensors throughout the city to pinpoint where the pollution is the worst. It considers things like how much traffic there is, emissions from factories, and the current weather. Based on this, the AI system might predict which neighbourhoods will have bad air quality at different times. City officials can then send out health warnings, limit cars on the road, or ask factories to cut down on work for the day. The city can get ahead of the pollution problem, keeping everyone safer and breathing easier.

Reducing Emissions in Industries Using Predictive Maintenance

In traditional maintenance, a problem occurs with a machine, and then we fix it. This method is flawed, non-reliable, and increases carbon emissions. It also lowers production as the machines won’t be able to operate during the maintenance period, which further leads to revenue loss for the company.

What if AI was able to predict problems before they occur? Fixing a problem before it occurs is much better than waiting and letting the problem get bigger. By identifying issues before they occur, companies can also better plan maintenance schedules. Better plans can reduce downtime, improve energy efficiency, and overall reduce the company’s carbon footprint.

An infograph showcasing predictive maintenance compared to others types of maintenance.
An infograph showcasing predictive maintenance compared to others types of maintenance.

This is possible with the help of predictive analytics and generative AI and is known as predictive maintenance. Generative AI can create new unseen data by spotting trends, and predictive analytics uses historical data to help make smart choices. Combining these AI technologies, we can identify when the machine will have to undergo maintenance, giving operators time to make alternate arrangements for maintenance and ensuring stable production and revenue flow.

Here are some of the benefits of using predictive maintenance to reduce emissions:

  • Less Pollution: Smoother operations mean we’re not wasting energy and pumping out unnecessary emissions.

  • Reducing Costs: Catching issues early can cut down on hefty repair costs and lost production.

  • Better Production: Machines that are well cared for run smoother and waste less, boosting efficiency.

  • Safer Workplaces: Regular upkeep also means fewer accidents, making for a safer environment for everyone.

AI is Making Supply Chains Smarter

Supply chains are another huge factor in a company’s carbon footprint. Studies show that over 90% of an organisation’s greenhouse gases come from its supply chain. As different businesses try to reduce their carbon footprint, they are finding new and innovative ways to use AI to follow environmentally friendly practices within their supply chains. Research shows that AI will be worth $17.5 billion in the global supply chain management software market by 2028.

For instance, computer vision can be used for inventory management. Cameras are set up throughout a warehouse or storage area that continuously capture images or video footage of the products on the shelves. By analysing these images and videos, computer vision systems can monitor stock levels in real time, automatically identifying when items are running low or when there’s too much stock on the shelves. Computer vision can help businesses optimise inventory levels and reduce waste caused by overstocking or understocking.

Warehouses are easier to maintain with the help of AI.
Warehouses are easier to maintain with the help of AI.

Overstocking not only ties up capital in unsold goods but also leads to waste, especially if the products are perishable. Understocking, on the other hand, can lead to missed sales opportunities and dissatisfied customers. Also, having too much inventory often means spending extra on storage and transportation, which isn’t just costly - it’s also bad for the environment due to the additional energy consumption involved.

Computer vision is just one example of AI in supply chain management. There are many different applications of AI related to reducing carbon footprints in the supply chain. GPU acceleration supercharges these AI applications, speeding up the processing of massive datasets that computer vision and other AI technologies rely on. Supply chain decisions can be made faster and more efficiently using GPU acceleration, from optimising inventory to planning eco-friendly delivery routes.

A great example of an adopter of AI in supply chain management is Walmart. They are using AI systems to plan delivery routes, which helps save fuel and reduce carbon emissions. DHL also uses a similar AI system to monitor its delivery routes and quickly spot problems like delayed packages.

Lately, innovations in AI to reduce carbon footprints across various industries have been trending. Exciting applications and solutions are being worked on, and we are seeing more and more corporations take part in this trend. As more professionals take part in this movement, we are seeing climate change being controlled better and better.

An infographic about using AI for climate control.
An infographic about using AI for climate control.

For instance, closed-loop automation systems are reshaping how operations are conducted by using real-time data to continuously monitor and adjust processes, with oil and gas companies reporting a 10-15% reduction in emissions.

AI is also making big strides with flare monitoring systems, fine-tuning how flares operate to reduce emissions by an extra 5-10%. Beyond this, AI is improving operations that run on their own, like inspections and drilling done by drones and robots. A 10-20% drop in carbon emissions can be seen by cutting down on human mistakes and the energy we don’t really need to use.

Another exciting breakthrough is digital twin technology. It builds virtual replicas of physical things and their processes. Digital twin technology lets us monitor and analyse emissions with great accuracy. It’s a big help for industries aiming to reduce their carbon footprint and meet their green goals. Digital twins are essential because they provide a clear and practical way to cut emissions down to almost nothing.

Challenges

Despite all the promising capabilities AI technologies bring to reducing carbon footprints, there are many challenges as well. One major challenge is the creation of e-waste. According to the Global E-waste Monitor 2020, the world will see an astonishing 74 million metric tons of e-waste by 2030.

An image showing a pile of e-waste.
An image showing a pile of e-waste.

With artificial intelligence technologies being developed and integrated into daily life at a rapid pace, the world’s e-waste problem is expected to worsen as there’s a higher demand for CPUs, GPUs, and memory chips. It’s not reliable if the technology we made to reduce carbon emissions is also causing it. This problem needs to be solved as soon as possible.

Similarly, AI technologies used in data centres can have high resource utilisation, such as using lots of water for cooling. A study found that every ChatGPT conversation with 20-50 questions can use as much as a 500-millilitre bottle of water at a data centre, and in 2022, Google reported its data centres worldwide used 5.2 billion gallons of water.

Another concern is the need for more transparency in AI-related decision-making. For most people, it is unclear how machine learning models, especially deep learning networks, work and make decisions. This makes it hard to understand how AI reaches its conclusions, raising concerns about bias and accountability, especially in fields like healthcare and law. Many organisations recognise this challenge but have few comprehensive data and ethics policies in place.

Such a concern will lead to people not trusting AI. The lack of transparency and understanding of how AI makes decisions could cast a shadow over its many benefits. People need to feel confident that AI is working in their best interest, especially when it comes to critical decisions affecting health, safety, and the environment. Building this trust is essential, not just for the acceptance of AI technologies but for their successful integration into our efforts to combat climate change and protect the planet. Addressing these challenges requires expertise and care, and this is where TechnoLynx can step in to deliver verifiable and explainable AI solutions.

What We Can Offer as TechnoLynx

At TechnoLynx, we specialise in delivering custom, innovative solutions specifically tailored to your unique business challenges. We understand the difficulties of integrating AI into different industries and public sectors like transportation and power grid management. Our expertise covers enhancing AI capabilities, ensuring efficiency, managing and analysing extensive data sets, and addressing ethical considerations.

Our expertise in computer vision, generative AI, GPU acceleration, and IoT edge computing can help you explore many possibilities. We aim to push the boundaries of innovation while ensuring adherence to vigorous safety standards. For more information, feel free to contact us.

Conclusion

AI has the potential to improve various aspects of our lives, from monitoring and improving air quality to reducing carbon emissions caused by supply chains. However, integrating AI into these sectors is complex and presents many challenges.

Tackling these issues means everyone needs to work together, including AI solution providers who really get what you’re worried about and can help sort them out. At TechnoLynx, we do exactly that and are focused on pushing the boundaries of innovation while ensuring safety and transparency.

Sources for the images:

AI in Pharma R&D: Faster, Smarter Decisions

AI in Pharma R&D: Faster, Smarter Decisions

3/10/2025

How AI helps pharma teams accelerate research, reduce risk, and improve decision-making in drug development.

Sterile Manufacturing: Precision Meets Performance

Sterile Manufacturing: Precision Meets Performance

2/10/2025

How AI and smart systems are helping pharma teams improve sterile manufacturing without compromising compliance or speed.

Biologics Without Bottlenecks: Smarter Drug Development

Biologics Without Bottlenecks: Smarter Drug Development

1/10/2025

How AI and visual computing are helping pharma teams accelerate biologics development and reduce costly delays.

AI for Cleanroom Compliance: Smarter, Safer Pharma

AI for Cleanroom Compliance: Smarter, Safer Pharma

30/09/2025

Discover how AI-powered vision systems are revolutionising cleanroom compliance in pharma, balancing Annex 1 regulations with GDPR-friendly innovation.

Nitrosamines in Medicines: From Risk to Control

Nitrosamines in Medicines: From Risk to Control

29/09/2025

A practical guide for pharma teams to assess, test, and control nitrosamine risks—clear workflow, analytical tactics, limits, and lifecycle governance.

Making Lab Methods Work: Q2(R2) and Q14 Explained

Making Lab Methods Work: Q2(R2) and Q14 Explained

26/09/2025

How to build, validate, and maintain analytical methods under ICH Q2(R2)/Q14—clear actions, smart documentation, and room for innovation.

Barcodes in Pharma: From DSCSA to FMD in Practice

Barcodes in Pharma: From DSCSA to FMD in Practice

25/09/2025

What the 2‑D barcode and seal on your medicine mean, how pharmacists scan packs, and why these checks stop fake medicines reaching you.

Pharma’s EU AI Act Playbook: GxP‑Ready Steps

Pharma’s EU AI Act Playbook: GxP‑Ready Steps

24/09/2025

A clear, GxP‑ready guide to the EU AI Act for pharma and medical devices: risk tiers, GPAI, codes of practice, governance, and audit‑ready execution.

Cell Painting: Fixing Batch Effects for Reliable HCS

Cell Painting: Fixing Batch Effects for Reliable HCS

23/09/2025

Reduce batch effects in Cell Painting. Standardise assays, adopt OME‑Zarr, and apply robust harmonisation to make high‑content screening reproducible.

Explainable Digital Pathology: QC that Scales

Explainable Digital Pathology: QC that Scales

22/09/2025

Raise slide quality and trust in AI for digital pathology with robust WSI validation, automated QC, and explainable outputs that fit clinical workflows.

Validation‑Ready AI for GxP Operations in Pharma

Validation‑Ready AI for GxP Operations in Pharma

19/09/2025

Make AI systems validation‑ready across GxP. GMP, GCP and GLP. Build secure, audit‑ready workflows for data integrity, manufacturing and clinical trials.

Image Analysis in Biotechnology: Uses and Benefits

Image Analysis in Biotechnology: Uses and Benefits

17/09/2025

Learn how image analysis supports biotechnology, from gene therapy to agricultural production, improving biotechnology products through cost effective and accurate imaging.

Edge Imaging for Reliable Cell and Gene Therapy

17/09/2025

Edge imaging transforms cell & gene therapy manufacturing with real‑time monitoring, risk‑based control and Annex 1 compliance for safer, faster production.

Biotechnology Solutions for Climate Change Challenges

16/09/2025

See how biotechnology helps fight climate change with innovations in energy, farming, and industry while cutting greenhouse gas emissions.

Vision Analytics Driving Safer Cell and Gene Therapy

15/09/2025

Learn how vision analytics supports cell and gene therapy through safer trials, better monitoring, and efficient manufacturing for regenerative medicine.

AI in Genetic Variant Interpretation: From Data to Meaning

15/09/2025

AI enhances genetic variant interpretation by analysing DNA sequences, de novo variants, and complex patterns in the human genome for clinical precision.

AI Visual Inspection for Sterile Injectables

11/09/2025

Improve quality and safety in sterile injectable manufacturing with AI‑driven visual inspection, real‑time control and cost‑effective compliance.

Turning Telecom Data Overload into AI Insights

10/09/2025

Learn how telecoms use AI to turn data overload into actionable insights. Improve efficiency with machine learning, deep learning, and NLP.

Computer Vision in Action: Examples and Applications

9/09/2025

Learn computer vision examples and applications across healthcare, transport, retail, and more. See how computer vision technology transforms industries today.

Hidden Costs of Fragmented Security Systems

8/09/2025

Learn the hidden costs of a fragmented security system, from monthly fee traps to rising insurance premiums, and how to fix them cost-effectively.

EU GMP Annex 1 Guidelines for Sterile Drugs

5/09/2025

Learn about EU GMP Annex 1 compliance, contamination control strategies, and how the pharmaceutical industry ensures sterile drug products.

Predicting Clinical Trial Risks with AI in Real Time

5/09/2025

AI helps pharma teams predict clinical trial risks, side effects, and deviations in real time, improving decisions and protecting human subjects.

5 Real-World Costs of Outdated Video Surveillance

4/09/2025

Outdated video surveillance workflows carry hidden costs. Learn the risks of poor image quality, rising maintenance, and missed incidents.

GDPR and AI in Surveillance: Compliance in a New Era

2/09/2025

Learn how GDPR shapes surveillance in the era of AI. Understand data protection principles, personal information rules, and compliance requirements for organisations.

Generative AI in Pharma: Compliance and Innovation

1/09/2025

Generative AI transforms pharma by streamlining compliance, drug discovery, and documentation with AI models, GANs, and synthetic training data for safer innovation.

AI Vision Models for Pharmaceutical Quality Control

1/09/2025

Learn how AI vision models transform quality control in pharmaceuticals with neural networks, transformer architecture, and high-resolution image analysis.

AI Analytics Tackling Telecom Data Overload

29/08/2025

Learn how AI-powered analytics helps telecoms manage data overload, improve real-time insights, and transform big data into value for long-term growth.

AI Visual Inspections Aligned with Annex 1 Compliance

28/08/2025

Learn how AI supports Annex 1 compliance in pharma manufacturing with smarter visual inspections, risk assessments, and contamination control strategies.

Cutting SOC Noise with AI-Powered Alerting

27/08/2025

Learn how AI-powered alerting reduces SOC noise, improves real time detection, and strengthens organisation security posture while reducing the risk of data breaches.

AI for Pharma Compliance: Smarter Quality, Safer Trials

27/08/2025

AI helps pharma teams improve compliance, reduce risk, and manage quality in clinical trials and manufacturing with real-time insights.

Cleanroom Compliance in Biotech and Pharma

26/08/2025

Learn how cleanroom technology supports compliance in biotech and pharmaceutical industries. From modular cleanrooms to laminar flow systems, meet ISO 14644-1 standards without compromise.

AI’s Role in Clinical Genetics Interpretation

25/08/2025

Learn how AI supports clinical genetics by interpreting variants, analysing complex patterns, and improving the diagnosis of genetic disorders in real time.

Computer Vision and the Future of Safety and Security

19/08/2025

Learn how computer vision improves safety and security through object detection, facial recognition, OCR, and deep learning models in industries from healthcare to transport.

Artificial Intelligence in Video Surveillance

18/08/2025

Learn how artificial intelligence transforms video surveillance through deep learning, neural networks, and real-time analysis for smarter decision support.

Top Biotechnology Innovations Driving Industry R&D

15/08/2025

Learn about the leading biotechnology innovations shaping research and development in the industry, from genetic engineering to tissue engineering.

AR and VR in Telecom: Practical Use Cases

14/08/2025

Learn how AR and VR transform telecom through real world use cases, immersive experience, and improved user experience across mobile devices and virtual environments.

AI-Enabled Medical Devices for Smarter Healthcare

13/08/2025

See how artificial intelligence enhances medical devices, deep learning, computer vision, and decision support for real-time healthcare applications.

3D Models Driving Advances in Modern Biotechnology

12/08/2025

Learn how biotechnology and 3D models improve genetic engineering, tissue engineering, industrial processes, and human health applications.

Computer Vision Applications in Modern Telecommunications

11/08/2025

Learn how computer vision transforms telecommunications with object detection, OCR, real-time video analysis, and AI-powered systems for efficiency and accuracy.

Telecom Supply Chain Software for Smarter Operations

8/08/2025

Learn how telecom supply chain software and solutions improve efficiency, reduce costs, and help supply chain managers deliver better products and services.

Enhancing Peripheral Vision in VR for Wider Awareness

6/08/2025

Learn how improving peripheral vision in VR enhances field of view, supports immersive experiences, and aids users with tunnel vision or eye disease.

AI-Driven Opportunities for Smarter Problem Solving

5/08/2025

AI-driven problem-solving opens new paths for complex issues. Learn how machine learning and real-time analysis enhance strategies.

10 Applications of Computer Vision in Autonomous Vehicles

4/08/2025

Learn 10 real world applications of computer vision in autonomous vehicles. Discover object detection, deep learning model use, safety features and real time video handling.

10 Applications of Computer Vision in Autonomous Vehicles

4/08/2025

Learn 10 real world applications of computer vision in autonomous vehicles. Discover object detection, deep learning model use, safety features and real time video handling.

How AI Is Transforming Wall Street Fast

1/08/2025

Discover how artificial intelligence and natural language processing with large language models, deep learning, neural networks, and real-time data are reshaping trading, analysis, and decision support on Wall Street.

How AI Transforms Communication: Key Benefits in Action

31/07/2025

How AI transforms communication: body language, eye contact, natural languages. Top benefits explained. TechnoLynx guides real‑time communication with large language models.

Top UX Design Principles for Augmented Reality Development

30/07/2025

Learn key augmented reality UX design principles to improve visual design, interaction design, and user experience in AR apps and mobile experiences.

AI Meets Operations Research in Data Analytics

29/07/2025

AI in operations research blends data analytics and computer science to solve problems in supply chain, logistics, and optimisation for smarter, efficient systems.

← Back to Blog Overview