3 Ways How AI-as-a-Service Burns You Bad

Listen what our CEO has to say about the limitations of AI-as-a-Service.

3 Ways How AI-as-a-Service Burns You Bad
Written by TechnoLynx Published on 04 May 2023

The Illusion of Opportunity

I would definitely be very late to come and sing the praise of all the recent advancements in AI-as-a-service, mentioning things from the conscious-according-to-some GPT-variants to the best Midjourney fakes, so it’s a good thing that I didn’t plan to. For starters, yes, it is indeed true that, in many ways, the combination of iterative R&D and unrivalled budgets to train massive models led to unexpected results. In principle, I will present no arguments against the underlying technologies; my problem is the business model.

Running the R&D consultancy TechnoLynx, we are getting plenty of inbound requests asking our opinion and help on building solutions on top of existing AI-as-a-service systems, and I’ve had to explain their limitation so frequently that I now believe that due to the prevalence of fledgling AI startups attempting to capitalise and commercialise said services, it might be of public interest to talk a bit about the downsides too.

The story I frequently hear goes along these lines: “AI became a game of giants, who are very quick and very competitive in rolling out rivalling AI solutions as services, which are, on the one hand, great enablers for startups to build an eco-system based on them, but they have also elevated the bar on core AI so high, that it became pointless even to try to invest in that space anymore. The emergence of AI-as-a-service (SaaS wrappings) is a sign of the maturity of the technology, and this is how things will be from now on. To each their own, burn your data science books and clear your whiteboards! Let’s all go and play with a bit of prompt engineering instead!” Well, rapid prototyping using Lego blocks certainly has an appeal, but let me put my mouth where my money is.

Our creative team at work. Probably yours too.
Our creative team at work. Probably yours too.

1) Lack of Quality Control

My first practical concern is the limitations on quality control. Most tech-business owners would sleep better knowing that if something goes haywire, their team has the means to fix things, as much as bug fixing was a thing in the good old days of the Software 1.0 world. Albeit we often hear the argument that AI models are black boxes that we cannot possibly decipher anyway (to some extent, this is true), there are still differences between a black box that you don’t completely understand, but you can communicate with and train it incrementally better, and a Supermassive Black Hole of the Unknown put behind a convenient API by a 3rd party. In general, it should be possible to some extent alleviate this problem by having external, custom supervisory networks or with ideas like how ControlNet operates, but the natural way of working with deep learning models would, at the very least, enable unfettered gradient flow, which is not currently available. Hence, the means for quality control are barely existing.

Working under such conditions creates such a dependency on the underlying service that, in practice, relegates this current generation of fresh AI entrepreneurs to operate merely as salespeople for Sam Altman. It might have been your plan all along, but then why didn’t you just apply for a job at OpenAI?

“I’m telling you, man, that box-shaped thingie looks shady enough to me. Must be it.”
“I’m telling you, man, that box-shaped thingie looks shady enough to me. Must be it.”

2) Limitations of Customisation and Differentiation

Almost the same argument as just above, but not precisely, as there are two further sub-cases here. Most AI-as-a-service systems like ChatGPT already offer support to some extent of customisation, whether it be via refinement training or context-feeding. At present, context size and the general behaviour of forgetting it over time of use may be a practical issue, whilst for refinement training, whilst it is a valid strategy, the effect compared to vast amounts of pre-training may very well be more limited than expected.

Having said that, the sub-cases are as follows, from a practical point of view: the options on offer for customisation may prove insufficient, and should that be the case, as a user, you would have no way to expand upon them forcefully. If you could customise enough, good for you, but if not, wait for a few months/years to be at the mercy of your service provider before they enable you.

On the other hand, customisation and ease of use may be, on the contrary, super-accessible. As we see the story with prompt engineering, it is more like a game of “-Oh, but the AI cannot solve this problem! — Yes, it can; you just need to ask it the right way! — How do I learn that? — You don’t have to, just use this kit PE + AI, and it does that for you!”, ultimately leading to something accessible. Yes, you figured it out: if you could use it efficiently, so could others, and you just witnessed your window of opportunity getting closed.

3) Privacy Issues and Ethical Concerns

Based on the previous paragraph, let’s assume that refinement training, or even some kind of online training, is available for your choice of AI-as-a-service. So far, it was crystal clear to everyone that the primary enabler and differentiator in the AI race is access to better quality and more diverse data, preferably from some live source you control. Here comes AI-as-a-service, and all of a sudden, nobody minds building such sources as part of the eco-system-building exercise and handing data over to their preferred AI-as-a-service provider!

Let me be very clear: nothing has changed, and data is still king, but you may not be for long unless you are very careful about whom you trust with it.

Louis was not careful enough with his data and did not listen to the ethical concerns of the people
Louis was not careful enough with his data and did not listen to the ethical concerns of the people

Unfortunately, the same applies not only to your data but also to the vendor’s training data. Behind the API firewall, you will hardly ever know what kind of data was used for training, if it was ethically sourced with appropriate consent, or if it was representative enough of all demographics. E.g. in the case of ChatGPT, most nations by now are pretty aware of the massive bias towards the corpus of the Anglosphere. There is no reason to believe the situation would improve much in general.

Not to mention that lacking oversight of the complete training process and data also means that testing may be undermined by having an overlap between training and test data. The chance of this might be insignificant for large language models of general purpose. Still, for LLM specialisations targeting specialist topics (so pretty much any actionable idea with business value in the space), the chances of overlap are far higher, given the limitations of total corpus size.

How Can I Succeed Then?

For starters, don’t try and trust your luck so much. You will not find low-hanging fruits. You will need to work hard, and working hard in this space means putting effort into proper research and development and owning the technology you rely on. On the other hand, don’t believe what others are telling you. The barrier to entry is not as crazy high as more prominent companies want you to feel. Quite the contrary, the progress on the R&D side is entirely incremental in nature, and the effort to publish recent results as whitepapers and sometimes as open databases is still very much alive. The baseline technology level available is solid in general. The only thing that requires tremendous resources is the ability to show a momentary fickle of progress never seen before — and even that advantage seems to have a very short half-life in practice. Core R&D on AI is not a finished business, and there is no proof that actual breakthroughs could only come from big players. The game is open for startups and organic SMEs alike. Indeed, building an engineering team capable of doing relevant research whilst also developing practically usable software is not easy. Still, for all of you aiming for it, TechnoLynx would be happy to listen to your ambitious ideas and chart a way forward together, with fundamental R&D over playing with Lego blocks. There is nothing wrong with Lego blocks, either. I also used to play a lot with them, up until elementary school.

A ChatGPT-entrepreneur working on his business plan
A ChatGPT-entrepreneur working on his business plan
Making Lab Methods Work: Q2(R2) and Q14 Explained

Making Lab Methods Work: Q2(R2) and Q14 Explained

26/09/2025

How to build, validate, and maintain analytical methods under ICH Q2(R2)/Q14—clear actions, smart documentation, and room for innovation.

Barcodes in Pharma: From DSCSA to FMD in Practice

Barcodes in Pharma: From DSCSA to FMD in Practice

25/09/2025

What the 2‑D barcode and seal on your medicine mean, how pharmacists scan packs, and why these checks stop fake medicines reaching you.

Pharma’s EU AI Act Playbook: GxP‑Ready Steps

Pharma’s EU AI Act Playbook: GxP‑Ready Steps

24/09/2025

A clear, GxP‑ready guide to the EU AI Act for pharma and medical devices: risk tiers, GPAI, codes of practice, governance, and audit‑ready execution.

Cell Painting: Fixing Batch Effects for Reliable HCS

Cell Painting: Fixing Batch Effects for Reliable HCS

23/09/2025

Reduce batch effects in Cell Painting. Standardise assays, adopt OME‑Zarr, and apply robust harmonisation to make high‑content screening reproducible.

Explainable Digital Pathology: QC that Scales

Explainable Digital Pathology: QC that Scales

22/09/2025

Raise slide quality and trust in AI for digital pathology with robust WSI validation, automated QC, and explainable outputs that fit clinical workflows.

Validation‑Ready AI for GxP Operations in Pharma

Validation‑Ready AI for GxP Operations in Pharma

19/09/2025

Make AI systems validation‑ready across GxP. GMP, GCP and GLP. Build secure, audit‑ready workflows for data integrity, manufacturing and clinical trials.

Image Analysis in Biotechnology: Uses and Benefits

Image Analysis in Biotechnology: Uses and Benefits

17/09/2025

Learn how image analysis supports biotechnology, from gene therapy to agricultural production, improving biotechnology products through cost effective and accurate imaging.

Edge Imaging for Reliable Cell and Gene Therapy

Edge Imaging for Reliable Cell and Gene Therapy

17/09/2025

Edge imaging transforms cell & gene therapy manufacturing with real‑time monitoring, risk‑based control and Annex 1 compliance for safer, faster production.

Biotechnology Solutions for Climate Change Challenges

Biotechnology Solutions for Climate Change Challenges

16/09/2025

See how biotechnology helps fight climate change with innovations in energy, farming, and industry while cutting greenhouse gas emissions.

Vision Analytics Driving Safer Cell and Gene Therapy

Vision Analytics Driving Safer Cell and Gene Therapy

15/09/2025

Learn how vision analytics supports cell and gene therapy through safer trials, better monitoring, and efficient manufacturing for regenerative medicine.

AI in Genetic Variant Interpretation: From Data to Meaning

AI in Genetic Variant Interpretation: From Data to Meaning

15/09/2025

AI enhances genetic variant interpretation by analysing DNA sequences, de novo variants, and complex patterns in the human genome for clinical precision.

AI Visual Inspection for Sterile Injectables

AI Visual Inspection for Sterile Injectables

11/09/2025

Improve quality and safety in sterile injectable manufacturing with AI‑driven visual inspection, real‑time control and cost‑effective compliance.

Turning Telecom Data Overload into AI Insights

10/09/2025

Learn how telecoms use AI to turn data overload into actionable insights. Improve efficiency with machine learning, deep learning, and NLP.

Computer Vision in Action: Examples and Applications

9/09/2025

Learn computer vision examples and applications across healthcare, transport, retail, and more. See how computer vision technology transforms industries today.

Hidden Costs of Fragmented Security Systems

8/09/2025

Learn the hidden costs of a fragmented security system, from monthly fee traps to rising insurance premiums, and how to fix them cost-effectively.

EU GMP Annex 1 Guidelines for Sterile Drugs

5/09/2025

Learn about EU GMP Annex 1 compliance, contamination control strategies, and how the pharmaceutical industry ensures sterile drug products.

Predicting Clinical Trial Risks with AI in Real Time

5/09/2025

AI helps pharma teams predict clinical trial risks, side effects, and deviations in real time, improving decisions and protecting human subjects.

5 Real-World Costs of Outdated Video Surveillance

4/09/2025

Outdated video surveillance workflows carry hidden costs. Learn the risks of poor image quality, rising maintenance, and missed incidents.

GDPR and AI in Surveillance: Compliance in a New Era

2/09/2025

Learn how GDPR shapes surveillance in the era of AI. Understand data protection principles, personal information rules, and compliance requirements for organisations.

Generative AI in Pharma: Compliance and Innovation

1/09/2025

Generative AI transforms pharma by streamlining compliance, drug discovery, and documentation with AI models, GANs, and synthetic training data for safer innovation.

AI Vision Models for Pharmaceutical Quality Control

1/09/2025

Learn how AI vision models transform quality control in pharmaceuticals with neural networks, transformer architecture, and high-resolution image analysis.

AI Analytics Tackling Telecom Data Overload

29/08/2025

Learn how AI-powered analytics helps telecoms manage data overload, improve real-time insights, and transform big data into value for long-term growth.

AI Visual Inspections Aligned with Annex 1 Compliance

28/08/2025

Learn how AI supports Annex 1 compliance in pharma manufacturing with smarter visual inspections, risk assessments, and contamination control strategies.

Cutting SOC Noise with AI-Powered Alerting

27/08/2025

Learn how AI-powered alerting reduces SOC noise, improves real time detection, and strengthens organisation security posture while reducing the risk of data breaches.

AI for Pharma Compliance: Smarter Quality, Safer Trials

27/08/2025

AI helps pharma teams improve compliance, reduce risk, and manage quality in clinical trials and manufacturing with real-time insights.

Cleanroom Compliance in Biotech and Pharma

26/08/2025

Learn how cleanroom technology supports compliance in biotech and pharmaceutical industries. From modular cleanrooms to laminar flow systems, meet ISO 14644-1 standards without compromise.

AI’s Role in Clinical Genetics Interpretation

25/08/2025

Learn how AI supports clinical genetics by interpreting variants, analysing complex patterns, and improving the diagnosis of genetic disorders in real time.

Computer Vision and the Future of Safety and Security

19/08/2025

Learn how computer vision improves safety and security through object detection, facial recognition, OCR, and deep learning models in industries from healthcare to transport.

Artificial Intelligence in Video Surveillance

18/08/2025

Learn how artificial intelligence transforms video surveillance through deep learning, neural networks, and real-time analysis for smarter decision support.

Top Biotechnology Innovations Driving Industry R&D

15/08/2025

Learn about the leading biotechnology innovations shaping research and development in the industry, from genetic engineering to tissue engineering.

AR and VR in Telecom: Practical Use Cases

14/08/2025

Learn how AR and VR transform telecom through real world use cases, immersive experience, and improved user experience across mobile devices and virtual environments.

AI-Enabled Medical Devices for Smarter Healthcare

13/08/2025

See how artificial intelligence enhances medical devices, deep learning, computer vision, and decision support for real-time healthcare applications.

3D Models Driving Advances in Modern Biotechnology

12/08/2025

Learn how biotechnology and 3D models improve genetic engineering, tissue engineering, industrial processes, and human health applications.

Computer Vision Applications in Modern Telecommunications

11/08/2025

Learn how computer vision transforms telecommunications with object detection, OCR, real-time video analysis, and AI-powered systems for efficiency and accuracy.

Telecom Supply Chain Software for Smarter Operations

8/08/2025

Learn how telecom supply chain software and solutions improve efficiency, reduce costs, and help supply chain managers deliver better products and services.

Enhancing Peripheral Vision in VR for Wider Awareness

6/08/2025

Learn how improving peripheral vision in VR enhances field of view, supports immersive experiences, and aids users with tunnel vision or eye disease.

AI-Driven Opportunities for Smarter Problem Solving

5/08/2025

AI-driven problem-solving opens new paths for complex issues. Learn how machine learning and real-time analysis enhance strategies.

10 Applications of Computer Vision in Autonomous Vehicles

4/08/2025

Learn 10 real world applications of computer vision in autonomous vehicles. Discover object detection, deep learning model use, safety features and real time video handling.

10 Applications of Computer Vision in Autonomous Vehicles

4/08/2025

Learn 10 real world applications of computer vision in autonomous vehicles. Discover object detection, deep learning model use, safety features and real time video handling.

How AI Is Transforming Wall Street Fast

1/08/2025

Discover how artificial intelligence and natural language processing with large language models, deep learning, neural networks, and real-time data are reshaping trading, analysis, and decision support on Wall Street.

How AI Transforms Communication: Key Benefits in Action

31/07/2025

How AI transforms communication: body language, eye contact, natural languages. Top benefits explained. TechnoLynx guides real‑time communication with large language models.

Top UX Design Principles for Augmented Reality Development

30/07/2025

Learn key augmented reality UX design principles to improve visual design, interaction design, and user experience in AR apps and mobile experiences.

AI Meets Operations Research in Data Analytics

29/07/2025

AI in operations research blends data analytics and computer science to solve problems in supply chain, logistics, and optimisation for smarter, efficient systems.

Generative AI Security Risks and Best Practice Measures

28/07/2025

Generative AI security risks explained by TechnoLynx. Covers generative AI model vulnerabilities, mitigation steps, mitigation & best practices, training data risks, customer service use, learned models, and how to secure generative AI tools.

Best Lightweight Vision Models for Real‑World Use

25/07/2025

Discover efficient lightweight computer vision models that balance speed and accuracy for object detection, inventory management, optical character recognition and autonomous vehicles.

Image Recognition: Definition, Algorithms & Uses

24/07/2025

Discover how AI-powered image recognition works, from training data and algorithms to real-world uses in medical imaging, facial recognition, and computer vision applications.

AI in Cloud Computing: Boosting Power and Security

23/07/2025

Discover how artificial intelligence boosts cloud computing while cutting costs and improving cloud security on platforms.

AI, AR, and Computer Vision in Real Life

22/07/2025

Learn how computer vision, AI, and AR work together in real-world applications, from assembly lines to social media, using deep learning and object detection.

← Back to Blog Overview