The Synergy of AI: Screening & Diagnostics on Steroids!

Sometimes a visit to the doctor for an X-ray is a necessity. Apart from having to endure the long queue, when you are in pain, the time until your results arrive can seem endless. Let’s take a look at how AI can be integrated into medical facilities to automate medical imaging for better screening and faster results.

The Synergy of AI: Screening & Diagnostics on Steroids!
Written by TechnoLynx Published on 03 May 2024

Introduction: AI’s Role in Healthcare and Medicine

The healthcare field is definitely one of the most respected worldwide, which is why the healthcare industry is so big! Physicians and healthcare professionals have been respected since ancient times. How ancient? Well, the world-famous Hippocratic Oath dates back to the 4th century BC. ‘I will use therapy which will benefit my patients according to my greatest ability and judgment, and I will do no harm or injustice to them’, says the Oath (Greek Medicine, no date).

Figure 1 – Concept image of a robot shaking hands with a human (Evaluation of AI for medical imaging: A key requirement for clinical translation, 2022)
Figure 1 – Concept image of a robot shaking hands with a human (Evaluation of AI for medical imaging: A key requirement for clinical translation, 2022)

We have seen how medicine has changed over the years. Our society has evolved from digesting roots and trepanning for therapeutic purposes to visualising our internals with cutting-edge technology that produces extremely crisp images. What is the next step? The integration of AI into our arsenal for medical decisions, of course! Keep scrolling to find out more.

With Proper Training Comes Great Results

The first thing most people think about when they hear the word AI is something high-tech, and you know what? They would be right! AI is the theory and development of computer systems capable of performing tasks that normally require human intelligence, such as visual perception, speech recognition, decision-making, and language translation. ‘And how is that achieved?’ we hear you ask. The answer is hidden in a method you have probably already heard of that teaches computers to process data in a way inspired by the human brain: Deep Learning (DL). Before we dive deeper, we need to get a little technical, possibly geeky. We know you came here for the main course, but, trust us, you will find the appetiser very interesting.

Figure 2 – Illustration of a robot thinking while trying to solve mathematical calculations (Building smarter machines, 2019)
Figure 2 – Illustration of a robot thinking while trying to solve mathematical calculations (Building smarter machines, 2019)

“I Will Make a ‘Man’ Out of You!”

Each AI algorithm needs proper training to perform its wonders. Optimally, this is achieved by creating an algorithm that can be trained on hundreds of thousands, if not millions, of data. To do that, we first must ensure that the data we feed the algorithm properly. This means that the data must be collected from various sources, such as databases, and that the data are ‘clean’. To do that, we need to check that there are no missing values or inconsistencies, that the classes are meaningful, and the labels are correct. The data are then transformed with techniques that normalise them, reduce their dimensions, or augment the data while ensuring no information is lost or wrongfully duplicated. Finally, the data are divided into train and test sets, and adjustments are made to ensure maximum accuracy with the minimum number of resources used. So far so good? Nice! Let’s move on.

Going beyond human!

We might want to make the most efficient and infallible AI algorithm for medical imaging. But what happens when the data are simply not enough? Well, it is not called AI for no reason! One of the best features of AI is Data Augmentation (DA). Generative AI models can alter existing data to generate new ones, but that is not all! One of the most powerful features of generative AI is Synthetic Image Generation (SIG). The difference between DA and SIG is that, instead of altering existing medical images, SIG can create synthetic medical images using the limited resources it has been provided with. Bless creativity!

The Incorporation of AI in Modern Medical Tech

Deep Learning (DL) and Computer Vision (CV), a GPU-accelerated pipeline of AI, have been used extensively in medical facilities by integrating them into medical Decision Support Systems (DSS). Such systems are embossed in most modern medical tech gear with the sole purpose of helping physicians and medical staff make the right decision at the right time. AI is defined by its ability to learn from large datasets and make decisions. Its computational power on numbers could be analogous to what we humans call ‘experience’. AI algorithms can run through millions of patient records and make decisions about their health status simply by looking at the input data. Although the results can be stunning, there is a way to push this beyond limits, called ‘Edge Computing’. Medical facilities have their servers and databases for the localised processing of data. Having them up to date hardware-wise allows the processing power to be maximised while minimising the time consumption. In this way, we optimise the performance of the AI algorithm with instantaneous results!

I See it All, I Know it All!

Medical imaging is one of the fanciest applications of CV. At least once in your life, you surely have had to have an X-ray, right? If you recall, the doctor would place your X-ray in a view box and carefully try to identify possible abnormalities. That’s ok, for sure, but is it even allowed in the digital age? Modern-age doctors have been shown to prefer DSS algorithms over the standard procedure that has been followed for many years. The reason is very simple: automation. CV can be trained to perform image analysis to automatically detect these abnormalities. Notice that we said ‘detect’. Not only can it identify which image has an abnormality, but it can also pinpoint with extreme precision where the abnormality is located! In one phrase: Computer-Aided Diagnosis (CAD). With a well-trained DSS pipeline, CV‘s benefits are multiple: Time-saving? Check! More accurate? Double check! The best part is that such algorithms can be set to be trained by learning from their mistakes. A doctor would not risk a machine-caused error. By interacting with the algorithm, it can be taught to recognise and never repeat the same mistake in real time!

Figure 3 – Cerebrospinal fluid MRI scan where different areas of the brain are colour-coded using DL (‘Aging-related volume changes in the brain and cerebrospinal fluid using AI-automated segmentation - AI Blog - ESR | European Society of Radiology %’, no date)
Figure 3 – Cerebrospinal fluid MRI scan where different areas of the brain are colour-coded using DL (‘Aging-related volume changes in the brain and cerebrospinal fluid using AI-automated segmentation - AI Blog - ESR | European Society of Radiology %’, no date)

My Game, my Rules… My Risks?

Although we have shown what practical applications AI can have in medical imaging and CAD, nothing comes without a cost. As mentioned, great training comes with great results, but let us not forget that ‘with great power comes great responsibility’. Such a powerful tool as AI has its risks that must be addressed. And no, we will not talk about AI taking over and leaving us unemployed. The thing is that even though AI is so smart, it can sometimes be challenging to train. The challenges lie mostly in the lack of data, which, surely enough, can be countered with DA and SIG, as we already mentioned. However, the biggest threat to AI is something that you might or might not expect. If your guess was ‘humans’, you would be right. Human error remains a threat to the proper training and use of AI. Think of AI as a recipe for food. Despite executing it word by word, the meal will be a disaster if you add a ton of salt and pepper! Now take this and multiply it by a zillion times. After all, we are talking about human lives. Automation is good and all, but if a tiny issue can mess up one patient’s results, imagine what it would do to an entire medical facility with thousands of them.

Figure 4 – An image of a physician interacting with his AI-loaded portable device (How AI Helps Physicians Improve Telehealth Patient Care in Real-Time | telemedicine.arizona.edu, no date)
Figure 4 – An image of a physician interacting with his AI-loaded portable device (How AI Helps Physicians Improve Telehealth Patient Care in Real-Time | telemedicine.arizona.edu, no date)

Summing Up

AI is a powerful ally in the field of medicine and healthcare. It can perform classification and segmentation tasks on medical images and screening, generate artificial images, and even correct its errors. In a nutshell, AI can undoubtedly almost run the diagnostics of an entire medical imaging facility on its own. By providing enough training information and having the necessary resources, there is no task AI cannot do.

What We Offer

At TechnoLynx, we specialise in delivering custom, innovative tech solutions tailored to any challenge because we understand the benefits of integrating AI into medical applications and healthcare institutions. Our expertise covers improving AI capabilities, ensuring safety in human-machine interactions, managing and analysing extensive data sets, and addressing ethical considerations.

We offer precise software solutions designed to empower AI-driven algorithms in various industries. Our commitment to innovation drives us to adapt to the ever-evolving AI landscape. We provide cutting-edge solutions that increase efficiency, accuracy, and productivity. Feel free to contact us. We will be more than happy to answer any questions!

List of references

AI in Pharma R&D: Faster, Smarter Decisions

AI in Pharma R&D: Faster, Smarter Decisions

3/10/2025

How AI helps pharma teams accelerate research, reduce risk, and improve decision-making in drug development.

Sterile Manufacturing: Precision Meets Performance

Sterile Manufacturing: Precision Meets Performance

2/10/2025

How AI and smart systems are helping pharma teams improve sterile manufacturing without compromising compliance or speed.

Biologics Without Bottlenecks: Smarter Drug Development

Biologics Without Bottlenecks: Smarter Drug Development

1/10/2025

How AI and visual computing are helping pharma teams accelerate biologics development and reduce costly delays.

AI for Cleanroom Compliance: Smarter, Safer Pharma

AI for Cleanroom Compliance: Smarter, Safer Pharma

30/09/2025

Discover how AI-powered vision systems are revolutionising cleanroom compliance in pharma, balancing Annex 1 regulations with GDPR-friendly innovation.

Nitrosamines in Medicines: From Risk to Control

Nitrosamines in Medicines: From Risk to Control

29/09/2025

A practical guide for pharma teams to assess, test, and control nitrosamine risks—clear workflow, analytical tactics, limits, and lifecycle governance.

Making Lab Methods Work: Q2(R2) and Q14 Explained

Making Lab Methods Work: Q2(R2) and Q14 Explained

26/09/2025

How to build, validate, and maintain analytical methods under ICH Q2(R2)/Q14—clear actions, smart documentation, and room for innovation.

Barcodes in Pharma: From DSCSA to FMD in Practice

Barcodes in Pharma: From DSCSA to FMD in Practice

25/09/2025

What the 2‑D barcode and seal on your medicine mean, how pharmacists scan packs, and why these checks stop fake medicines reaching you.

Pharma’s EU AI Act Playbook: GxP‑Ready Steps

Pharma’s EU AI Act Playbook: GxP‑Ready Steps

24/09/2025

A clear, GxP‑ready guide to the EU AI Act for pharma and medical devices: risk tiers, GPAI, codes of practice, governance, and audit‑ready execution.

Cell Painting: Fixing Batch Effects for Reliable HCS

Cell Painting: Fixing Batch Effects for Reliable HCS

23/09/2025

Reduce batch effects in Cell Painting. Standardise assays, adopt OME‑Zarr, and apply robust harmonisation to make high‑content screening reproducible.

Explainable Digital Pathology: QC that Scales

Explainable Digital Pathology: QC that Scales

22/09/2025

Raise slide quality and trust in AI for digital pathology with robust WSI validation, automated QC, and explainable outputs that fit clinical workflows.

Validation‑Ready AI for GxP Operations in Pharma

Validation‑Ready AI for GxP Operations in Pharma

19/09/2025

Make AI systems validation‑ready across GxP. GMP, GCP and GLP. Build secure, audit‑ready workflows for data integrity, manufacturing and clinical trials.

Image Analysis in Biotechnology: Uses and Benefits

Image Analysis in Biotechnology: Uses and Benefits

17/09/2025

Learn how image analysis supports biotechnology, from gene therapy to agricultural production, improving biotechnology products through cost effective and accurate imaging.

Edge Imaging for Reliable Cell and Gene Therapy

17/09/2025

Edge imaging transforms cell & gene therapy manufacturing with real‑time monitoring, risk‑based control and Annex 1 compliance for safer, faster production.

Biotechnology Solutions for Climate Change Challenges

16/09/2025

See how biotechnology helps fight climate change with innovations in energy, farming, and industry while cutting greenhouse gas emissions.

Vision Analytics Driving Safer Cell and Gene Therapy

15/09/2025

Learn how vision analytics supports cell and gene therapy through safer trials, better monitoring, and efficient manufacturing for regenerative medicine.

AI in Genetic Variant Interpretation: From Data to Meaning

15/09/2025

AI enhances genetic variant interpretation by analysing DNA sequences, de novo variants, and complex patterns in the human genome for clinical precision.

AI Visual Inspection for Sterile Injectables

11/09/2025

Improve quality and safety in sterile injectable manufacturing with AI‑driven visual inspection, real‑time control and cost‑effective compliance.

Turning Telecom Data Overload into AI Insights

10/09/2025

Learn how telecoms use AI to turn data overload into actionable insights. Improve efficiency with machine learning, deep learning, and NLP.

Computer Vision in Action: Examples and Applications

9/09/2025

Learn computer vision examples and applications across healthcare, transport, retail, and more. See how computer vision technology transforms industries today.

Hidden Costs of Fragmented Security Systems

8/09/2025

Learn the hidden costs of a fragmented security system, from monthly fee traps to rising insurance premiums, and how to fix them cost-effectively.

EU GMP Annex 1 Guidelines for Sterile Drugs

5/09/2025

Learn about EU GMP Annex 1 compliance, contamination control strategies, and how the pharmaceutical industry ensures sterile drug products.

Predicting Clinical Trial Risks with AI in Real Time

5/09/2025

AI helps pharma teams predict clinical trial risks, side effects, and deviations in real time, improving decisions and protecting human subjects.

5 Real-World Costs of Outdated Video Surveillance

4/09/2025

Outdated video surveillance workflows carry hidden costs. Learn the risks of poor image quality, rising maintenance, and missed incidents.

GDPR and AI in Surveillance: Compliance in a New Era

2/09/2025

Learn how GDPR shapes surveillance in the era of AI. Understand data protection principles, personal information rules, and compliance requirements for organisations.

Generative AI in Pharma: Compliance and Innovation

1/09/2025

Generative AI transforms pharma by streamlining compliance, drug discovery, and documentation with AI models, GANs, and synthetic training data for safer innovation.

AI Vision Models for Pharmaceutical Quality Control

1/09/2025

Learn how AI vision models transform quality control in pharmaceuticals with neural networks, transformer architecture, and high-resolution image analysis.

AI Analytics Tackling Telecom Data Overload

29/08/2025

Learn how AI-powered analytics helps telecoms manage data overload, improve real-time insights, and transform big data into value for long-term growth.

AI Visual Inspections Aligned with Annex 1 Compliance

28/08/2025

Learn how AI supports Annex 1 compliance in pharma manufacturing with smarter visual inspections, risk assessments, and contamination control strategies.

Cutting SOC Noise with AI-Powered Alerting

27/08/2025

Learn how AI-powered alerting reduces SOC noise, improves real time detection, and strengthens organisation security posture while reducing the risk of data breaches.

AI for Pharma Compliance: Smarter Quality, Safer Trials

27/08/2025

AI helps pharma teams improve compliance, reduce risk, and manage quality in clinical trials and manufacturing with real-time insights.

Cleanroom Compliance in Biotech and Pharma

26/08/2025

Learn how cleanroom technology supports compliance in biotech and pharmaceutical industries. From modular cleanrooms to laminar flow systems, meet ISO 14644-1 standards without compromise.

AI’s Role in Clinical Genetics Interpretation

25/08/2025

Learn how AI supports clinical genetics by interpreting variants, analysing complex patterns, and improving the diagnosis of genetic disorders in real time.

Computer Vision and the Future of Safety and Security

19/08/2025

Learn how computer vision improves safety and security through object detection, facial recognition, OCR, and deep learning models in industries from healthcare to transport.

Artificial Intelligence in Video Surveillance

18/08/2025

Learn how artificial intelligence transforms video surveillance through deep learning, neural networks, and real-time analysis for smarter decision support.

Top Biotechnology Innovations Driving Industry R&D

15/08/2025

Learn about the leading biotechnology innovations shaping research and development in the industry, from genetic engineering to tissue engineering.

AR and VR in Telecom: Practical Use Cases

14/08/2025

Learn how AR and VR transform telecom through real world use cases, immersive experience, and improved user experience across mobile devices and virtual environments.

AI-Enabled Medical Devices for Smarter Healthcare

13/08/2025

See how artificial intelligence enhances medical devices, deep learning, computer vision, and decision support for real-time healthcare applications.

3D Models Driving Advances in Modern Biotechnology

12/08/2025

Learn how biotechnology and 3D models improve genetic engineering, tissue engineering, industrial processes, and human health applications.

Computer Vision Applications in Modern Telecommunications

11/08/2025

Learn how computer vision transforms telecommunications with object detection, OCR, real-time video analysis, and AI-powered systems for efficiency and accuracy.

Telecom Supply Chain Software for Smarter Operations

8/08/2025

Learn how telecom supply chain software and solutions improve efficiency, reduce costs, and help supply chain managers deliver better products and services.

Enhancing Peripheral Vision in VR for Wider Awareness

6/08/2025

Learn how improving peripheral vision in VR enhances field of view, supports immersive experiences, and aids users with tunnel vision or eye disease.

AI-Driven Opportunities for Smarter Problem Solving

5/08/2025

AI-driven problem-solving opens new paths for complex issues. Learn how machine learning and real-time analysis enhance strategies.

10 Applications of Computer Vision in Autonomous Vehicles

4/08/2025

Learn 10 real world applications of computer vision in autonomous vehicles. Discover object detection, deep learning model use, safety features and real time video handling.

10 Applications of Computer Vision in Autonomous Vehicles

4/08/2025

Learn 10 real world applications of computer vision in autonomous vehicles. Discover object detection, deep learning model use, safety features and real time video handling.

How AI Is Transforming Wall Street Fast

1/08/2025

Discover how artificial intelligence and natural language processing with large language models, deep learning, neural networks, and real-time data are reshaping trading, analysis, and decision support on Wall Street.

How AI Transforms Communication: Key Benefits in Action

31/07/2025

How AI transforms communication: body language, eye contact, natural languages. Top benefits explained. TechnoLynx guides real‑time communication with large language models.

Top UX Design Principles for Augmented Reality Development

30/07/2025

Learn key augmented reality UX design principles to improve visual design, interaction design, and user experience in AR apps and mobile experiences.

AI Meets Operations Research in Data Analytics

29/07/2025

AI in operations research blends data analytics and computer science to solve problems in supply chain, logistics, and optimisation for smarter, efficient systems.

← Back to Blog Overview